Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(3): 2201-2208, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33629201

RESUMO

High-throughput sequencing of the Phoebe bournei transcriptome was performed, and novel SSR markers were identified. A total of 73,518 nonredundant unigenes were assembled and annotated by sequence similarity searching in diverse public databases. A total of 40,853 SSRs were identified from 73,518 unigenes. Twenty-three pairs of polymorphic EST-SSR markers were selected from 98 markers and used for genetic analyses in 75 individuals from three P. bournei populations. The 23 pairs of markers could detect abundant genetic information from the samples (PIC = 0.769), and cross-species amplification was successfully performed in other related species. Three populations had high level of genetic diversity (He = 0.658 in average), of which the population YS from Jiangxi province had the most abundant genetic diversity (He = 0.722). The results of genetic structure analyses showed that the population YS from Jiangxi province had obvious genetic differences from the other two populations, and the genetic information of the population SX from Fujian province was related to that of the population LC from Guangdong province and the population YS. The transcriptomic resources and EST-SSR markers are valuable tools not only for the ecological conservation of P. bournei but also for phylogenetic studies.


Assuntos
Etiquetas de Sequências Expressas/metabolismo , Lauraceae/genética , Repetições de Microssatélites/genética , Análise de Sequência de RNA , Transcriptoma/genética , Marcadores Genéticos , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
BMC Genomics ; 21(1): 368, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434522

RESUMO

BACKGROUND: SPL (SQUAMOSA-promoter binding protein-like) proteins form a large family of plant-specific transcription factors that play essential roles in various aspects of plant growth and development. They are potentially important candidates for genetic improvement of agronomic traits. However, there were limited information about the SPL genes in Jatropha curcas, an important biofuel plant. RESULTS: In Jatropha, 15 JcSPL genes were identified. Phylogenetic analysis revealed that most of the JcSPLs were closely related to SPLs from woody plant rather than herbaceous plant and distantly related to monocotyledon SPLs. Gene structure, conserved motif and repetitive sequence analysis indicated diverse and specific functions of some JcSPL genes. By combination of target prediction and degradome sequencing analysis, 10 of the 15 JcSPLs were shown to be targets of JcmiR156. Quantitative PCR analysis showed diversified spatial-temporal expression patterns of JcSPLs. It is interesting that the expression levels of JcSPL3 were the highest in all tissues examined in 7- or 10-year-old plants and exhibited increasing trend with plant age, suggesting its important role in the regulation of age development in Jatropha. Overexpression of JcSPL3 in Arabidopsis resulted in earlier flowering time, shorter silique length and reduced biomass of roots. CONCLUSIONS: Through comprehensive and systematic analysis of phylogenetic relationships, conserved motifs, gene structures, chromosomal locations, repetitive sequence and expression patterns, 15 JcSPL genes were identified in Jatropha and characterized in great detail. These results provide deep insight into the evolutionary origin and biological significance of plant SPLs and lay the foundation for further functional characterization of JcSPLs with the purpose of genetic improvement in Jatropha.


Assuntos
Genes de Plantas/genética , Genoma de Planta/genética , Jatropha/genética , Desenvolvimento Vegetal/genética , Arabidopsis/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Jatropha/classificação , Jatropha/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Motivos de Nucleotídeos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Front Plant Sci ; 9: 1619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515178

RESUMO

Terpenes serve important physiological and ecological functions in plants. Sindora glabra trees accumulate copious amounts of sesquiterpene-rich oleoresin in the stem. A transcriptome approach was used to determine the unique terpene biosynthesis pathway and to explore the different regulatory mechanisms responsible for the variation of terpene content among individuals. Analysis of de novo-assembled contigs revealed a complete set of genes for terpene biosynthesis. A total of 23,261 differentially expressed unigenes (DEGs) were discovered between high and low oil-yielding plants. DEG enrichment analysis suggested that the terpene biosynthesis process and the plant hormone signal transduction pathway may exert a major role in determining terpene variation in S. glabra. The expression patterns of candidate genes were further verified by quantitative RT-PCR experiments. Key genes involved in the terpene biosynthesis pathway were predominantly expressed in phloem and root tissues. Phylogenetic analysis and subcellular localization implied that S. glabra terpene synthases may evolve from a common ancestor. Furthermore, two sesquiterpene synthase genes, SgSTPS1 and SgSTPS2, were functionally characterized. SgSTPS1 mainly generated ß-caryophyllene from farnesyl pyrophosphate. SgSTPS2 is a versatile enzyme that catalyzes the formation of 12 sequiterpenes from farnesyl pyrophosphate and synthesis of three monoterpenes using geranyl pyrophosphate. Together, these results provide large reservoir for elucidating the molecular mechanism of terpene biosynthesis and for exploring the ecological function of sesquiterpenes in S. glabra.

4.
Biotechnol Appl Biochem ; 65(5): 748-755, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29633344

RESUMO

A novel esterase gene TLip was identified from the strain Thauera sp. and expressed at high levels in Escherichia coli. The TLip protein shared the highest identity (48%) to esterase TesA from Pseudomonas aeruginosa when compared to enzymes with reported properties. Phylogenetic analysis showed that TLip belongs to the GDSL family of bacterial lipolytic enzymes. TLip was an alkaline esterase with a broad optimal temperature range 37-50 °C and an optimal pH of 8.0. Substrate specificity assays showed that TLip preferred medium chain p-nitrophenyl esters (C6 -C12 ). Besides, the activity of TLip was strongly inhibited by Cu2+ but greatly enhanced by Triton X-100 and Tween 80. Thermostability assay revealed that TLip was stable without loss of activity at 37 °C and still retained 69% activity at 50 °C after 2 H of incubation. Together, these provided a good candidate for further exploration of TLip as a promising biocatalyst in industry.


Assuntos
Esterases/metabolismo , Thauera/enzimologia , Sequência de Aminoácidos , Meios de Cultura , Estabilidade Enzimática , Escherichia coli/genética , Esterases/antagonistas & inibidores , Esterases/química , Esterases/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...